
Pergamon 
Journal of Structural Geology, Vol. 16, No. 9, pp. 1275 to 1281, 1994 

Copyright © 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0191-8141/94 $07.(10+0.00 

0191--8141(94)E0002--G 

Evidence for a non-linear relationship between fracture spacing and layer 
thickness 

NIBIR MANDAL, SANJITENDRA KRISHNA DEB a n d  DEBDARPAN KHAN 

Department of Geological Sciences, Jadavpur University, Calcutta 700 032, India 

(Received 23 September 1992; accepted in revised form 23 November 1993) 

AImtraet--In experiments, extension fractures were generated in rigid layers of Piaster of Paris resting on a 
viscous substratum (pitch). The experimental results predict a non-linear relationship between the spacing of 
fractures in uniform brittle layers and layer thickness for fractures generated by the tractional force of embeddins 
weak rocks. We derive an equation which relates the critical fracture spacing (~) with layer thickness (b), tensile 
strength of the layer material/viscosity of the embedding medium ratio (to/r/) and bulk strain rate (eb). The 
equation shows that the spacing increases as a function of the square root of the layer thickness. The theory also 
predicts that the fracture spacing depends on the strain rate when the embedding weak medium is viscous. 

INTRODUCTION 

IN ROCKS of contrasting lithologies, the competent layers 
often have fractures or joints that are more or less 
regularly spaced. Such fractures may develop either in 
response to tensile stresses exerted by the flow of less 
competent layer, as for example in boudinaged struc- 
tures (Ramberg 1955) or in response to internal tensile 
stresses generated within the layers, e.g. cooling joints 
(Hyndman 1985, p. 66) and mud cracks (Pettijohn 1975, 
p. 122). 

Statistical analyses of fracture or joint spacing in a 
mechanical layer show a characteristic frequency distri- 
bution (Huang & Angelier 1989, Narr & Suppe 1991) 
which is weakly skewed and follows a gamma- 
distribution function or near log-normal distribution. 
Also, the median of joint spacing distribution increases 
with the mechanical layer thickness (Narr & Suppe 
1991). Several investigations (Price 1966, Hobbs 1967, 
Sowers 1973, Narr & Suppe 1991) revealed that fracture 
spacing depends on mechanical layer thickness, on con- 
trast in strengths between the fractured layer and the 
embedding medium, on layer-parallel extensional strain 
and on the presence of pre-existing flaws. 

Although the increase in fracture spacing with in- 
crease in layer thickness is well documented, the exact 
quantitative relationship between layer thickness and 
fracture spacing is not well established. Some workers 
(Bodgonov 1947, Novikova 1947, Price 1966, Narr & 
Suppe 1991) have suggested a linear relationship be- 
tween them. However, such a linear relationship is not 
universally accepted (Norris 1966, Mastella 1972). Joint 
spacing in thicker beds shows a non-linear relationship 
(Ladeira & Price 1981). 

Using theory and experiments, the present study 
explores the relationship of fracture spacing with layer 
thickness, the ratio of tensile strength for the fracturing 
layer to the viscosity of embedding medium, and bulk 
strain rate of the system. Both the theoretical and 

experimental results indicate that, under layer-parallel 
extension, a set of fractures will develop more or 
less simultaneously at a mechanically most-favoured 
spacing. In such a situation fracture spacing will have a 
non-linear relationship to mechanical layer thickness. 

FRACTURE SPACING IN ANALOG MODELS 

Experimental method 

The experiments were conducted with rigid layers of 
Plaster of Paris resting on a ductile substratum of pitch 
(Fig. 1). The rigid layers were prepared in the following 
manner. A volume of Plaster of Paris powder was mixed 
with water to form a dense liquid. The liquid was then 
poured into a rectangular box on the pitch block and 
allowed to dry under the air of a fan. A soft solid layer 
formed when the water in the liquid evaporates after 
drying for a certain interval of time. The borders of the 
layers were cut out with a knife and the rectangular box 
was removed (Fig. lb). The layer became rigid and its 
tensile strength increased progressively with further 
drying. The tensile strength of layer could, thus, be 
qualitatively controlled by the time of drying. For 
example, layers with large tensile strengths were created 
by drying periods of 15-20 min before beginning an 
experiment. In contrast, layers with lower tensile 
strength were generated by 4-6 min of drying. 

The rigid layers fractured in response to extension of 
the ductile substratum. Two sets of experiments were 
conducted. In the first series of experiments, the thick- 
nesses of layers were varied while the tensile strength of 
the material was unchanged. In the second series of 
experiments, tensile strength of the material was 
increased while the layer thickness remained constant. 
Similar experiments yielded similar results indicating 
the reproducibility of the experimental procedure. 
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¢1 b 
Fig. 1. (a) A sketch of experimental set-up, pBipitch block, LP--liquid Plaster of Paris, PW--Perspex-walled box, 
WP--wooden plate. (b) Same set-up after removal of the Perspex-walled box when the liquid Plaster of Paris has solidified, 

RP--rigid layer of Plaster of Paris. 
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than that in a layer of lower tensile strength for a given 
thickness (Fig. 3b). 

THEORETICAL ANALYSIS 

Fig. 2. Mode of development of fractures in three dimensions in a layer 
of Plaster or Paris. Fracture spacing (2) was measured on the plan of 

the model. Arrows show bulk tension direction. 

Experimental results 

Under  layer-parallel tension, a set of mode I (exten- 
sion) fractures nucleated more or less simultaneously in 
the brittle Plaster of Paris layer. However,  the fractures 
were not strictly arranged in a line. Some fractures 
nucleated in the central part and propagated to the 
borders of the model while fractures propagated from 
the margins to the centre in some other places. The 
propagation of fractures took place in a plane at a right 
angle to the bulk extension direction. In course of 
progressive extension, most of the fractures very rapidly 
transected the entire width of the Plaster of Paris strip. 
However,  at any instant there were always some frac- 
tures that did not extend the entire width (Fig. 2). The 
incomplete fracture propagation resulted in certain de- 
gree of non-uniformity in the spacing in profile of the 
model. Thus, the fracture spacing was measured from 
the surface of the model that yielded a very consistent 
regular value (Fig. 2). 

In the experiments with rigid layers of the same 
strength but different thicknesses, the fractures were 
closely spaced in the thin layers while they were more 
widely spaced in the thicker layers (Fig. 3a). These 
experiments yielded comparable magnitudes of layer 
thickness vs fracture spacing ratio with respect to field 
data (Ladeira & Price 1981, Narr & Suppe 1991). For 
example, the average spacing of fractures is about 0.9 cm 
when the layer has a thickness of 0.22 cm, whereas 
spacing increases to 2.85 cm when the thickness is 0.85 
cm. However ,  the fracture spacing does not increase 
linearly with the layer thickness (Fig. 4). The experi- 
mental curve for the non-linear variation is very similar 
to the curves of spacing vs bed thickness for field joints 
(fig. 2 in Ladeira & Price 1981). 

In the second set of experiments fracture spacing in 
the layers of higher tensile strength was always higher 

The present experiments show that the fractures in a 
layer are initiated all over the model more or less 
simultaneously at a regular spacing. None of the experi- 
ments displayed development of fractures by successive 
halving of the layers. This observation indicates that, 
under layer-parallel tension a rigid layer of large extent 
fails by a set of fractures which is mechanically most 
favoured. As was found in previous work (Hobbs 1967, 
Pollard & Segall 1987, Narr & Suppe 1991), these 
experiments show that layer thickness and tensile 
strength are important parameters for determining frac- 
ture spacing. In the following section, a theory will be 
developed that shows the strain rate of the system as an 
important additional factor when the embedding me- 
dium is viscous. 

Mathematical derivation 

A set of fractures will develop at a mechanically most 
favoured spacing where the resistance of the rigid layer 
to the bulk extension is minimal. The resistive forces act 
in two ways: resistance to layer failure and boundary 
resistance to the flow of weaker matrix at the surface of 
the rigid layer. To analyse these resistive forces, con- 
sider a uniform and flawless rigid layer of infinite extent 
resting on a viscous substratum with viscosity, r/, where 
the system is extended by a bulk strain rate, eb. Let  a 
co-ordinate frame (Fig. 5) be chosen such that the x axis 
is parallel to the extension direction and lies on the 
surface of the layer. Considering the first type of resist- 
ance, the tangential force at any point on the rigid layer 
(cf. equation 15 of Mandal & Khan 1991) is 

Tx = A -x, (1) 

where Tx is tractional force of the embedding medium 
on unit surface area of the rigid layer, x is the point of 
interest on the layer and A is a constant to be evaluated 
from the boundary conditions of the present problem. 
For convenience let a segment of the rigid layer with 
width, 2, be considered with one boundary at x = 0 and 
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Fig. 3. Tensional fractures in layers of Plaster of Paris. (a) Layers of different thicknesses: (i) 0.22, (ii) 0.39 and (iii) 0.57 cm, 
etc., but similar strength. (b) Layers of different strengths but about same thickness, 0.63 cm: layer (i) is harder than 

layer (ii). Scale bar = 1 cm. 
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Fig. 4. Plot of fracture spacing vs layer thickness from experiments 
with layers of different thicknesses but similar rigidity (Fig. 3a). 
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Fig .  5. C o - o r d i n a t e  f r a m e  (xy)  w i t h  x axis  p a r a l l e l  t o  t h e  b u l k  e x t e n s i o n  
d i r e c t i o n  a n d  l y ing  o n  t h e  i n t e r f a c e  o f  t h e  b r i t t l e  l a y e r .  V a r i a t i o n  o f  t h e  
d i s p l a c e m e n t  r a t e  (Dx)  a l o n g  t h e  x d i r e c t i o n  o f  p o i n t s  o n  a l ine  
( d a s h e d )  p a r a l l e l  t o  t h e  y axis  is s h o w n  b y  t h e  so l id  l ine .  b is t h e  l a y e r  
thickness, kb is the bulk extension rate of the embedding medium. Tx is 
tangential force per unit area at any point x on the surface of the layer. 

U* is the far-field velocity in the x direction. 

the  o the r  at x = 2. Assuming  that  the tensile force  
causing f ractur ing is a result  of  the tangent ia l  force ,  the  
tensile force  Fx m a y  be  de t e rmined  f rom equa t ion  (1) 

I I;0 f x = 2  r x d x = 2  A . x . d x = A . 2 2 .  (2) 
0 

For  extension f ractur ing at x = 0 by the tensile force  Fx 
the  following condi t ion must  be  satisfied ( R a m b e r g  
1955). 

Fx = 30. b, (3) 

where  3o and b are tensile s t rength  and layer  thickness,  
respect ively.  Subst i tut ing equa t ion  (2) in equa t ion  (3) 
we get 

A = to" b/22. (4) 

Dur ing  f rac ture  init iat ion at x = 0, the resist ive force  on 
the layer  surface at x = 2 will be ,  f rom equa t ion  (1), 

T~ = 30-ha .  (5) 

Equa t ion  (5) shows that ,  during f rac ture  ini t iat ion at x = 
0, the resist ive force  decreases  with increasing distance 
(2) f rom the init iat ion site. T h e  analysis indicates that  
f rac tures  fo rm m o r e  easily at a g rea te r  spacing. 

Cons ider  next  the second resis tance to f ractur ing f rom 
the w e a k e r  viscous in te rbeds  at the in terface  with the 
f ractur ing layer.  A flow gradient  fo rms  in the bedding-  
paral lel  velocity.  A drag  resis tance to the bulk  flow of  
the matr ix  results. T h e  var ia t ion of  d i sp lacement  rate  b x  
for  a line paral lel  to the y axis (Fig. 5) m a y  be rep-  
resen ted  by the fol lowing equa t ion  tha t  satisfies the  
b o u n d a r y  cond i t ions , / )~  ~ U* when  y --~ o0 and /gx  ~ 0 
as y---~ 0: 

b x = U*{1 - exp ( - y / r / h ) ) ,  (6) 

where  U* is the  x c o m p o n e n t  of  the  veloci ty of  a part icle 
in the  mat r ix ,  where  drag  resis tance is absent ,  relat ive to 
the veloci ty of  a part icle at the layer  in terface  (/gx = 0, 
Fig. 5). r/ is the matr ix  viscosity and k is an arb i t ra ry  
posi t ive constant .  In this equa t ion  r//' is a factor  because  
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drag resistance depends on viscosity. For example, a 
zone of drag resistance will be wide when the viscosity is 
large and narrow when the latter is very low. At any 
point the velocity gradient in the y direction can be 
determined by differentiating equation (6) as 

d / )x_  U* 
dy r/~-- exp (--y/rlk). (7a) ~' 

At the layer interface y = 0 z~ G 

dD x U* ~ • Tyy (7b) 

In the present theoretical analysis the matrix is assumed 
to be linearly viscous, so the shear is proportional to the 
velocity gradient. Thus, flow resistance adjacent to the 
layer interface is 

db~ 
T r = r] - -~ - -y  (8) 

(Douglas et al. 1990). 
Substituting for dL)xldy from equation (7b) 

T r = 7] 1 - k .  U * .  

Taking U* -- x.  eb, where eb is the far-field longitudi- 
nal strain rate parallel to the layering, 

Tr = r]l-k. X" eb. (9) 

From equation (9) the resistance to the matrix flow at x 
= 2 i s  

Tr = y ] l - k  . ~b"  )~" (10) 

For fractures to be initiated at x = 0 and x = 2 the total 
resistance to the bulk extension of the system at x = 2 is 
obtained by summing equations (5) and (10)" 

TR= T;~ + Tr 

TR = ~o" b/2 + rl t-k" eb" 2. (11) 

Equation (11) shows that TR increases with both a 
decrease and increase in 2. Thus a critical 2 value should 
exist at which TR is a minimum. Differentiating equation 
(11) to determine the minimum, 

aTR _ To" b t- r/1-k, eb = 0 (12) where 

ro 'b  
;tc 2 = r/ l-k" ~b 

"go " b 22 = ~ t "  ~b 

2 c -  • ~ .b , (13) 

where 2c is the critical spacing for two consecutive 
fractures that involves a minimum resistance to the bulk 
extension of the layered system. Equation (13) shows 
that the critical spacing increases non-linearly with layer 
thickness. The theoretical curve for spacing vs thickness 
(Fig. 6) for To = 1.56 Pa, r /=  1.5 x 106 poise and eb = 

lO 

~.~,%k~ ''~ 

1 

1 2 3 4 5 6 7 8 
LAYER-THICt~NESS 

(cm) 
Fig. 6. Fracture spacing (2c) vs layer thickness (b) relationship (from 
equation 13) for different R values where R = (to ~l-k) (1/~b). The 
corresponding ro values in Pa are given in brackets while r 1 and ~b are 
kept constant and have values of 1.5 x 10 6 poise and 10 -1 s -1 , 

respectively and k = 0. 

10 -1 s -1 resembles the curve obtained from experimen- 
tal data (Fig. 4). The shapes of fracture spacing vs 
thickness curves change with changes in the rheological 
parameters To, 7. Figure 6 shows that the curves for the 
lower range of To are gentle and show a lesser variation 
in fracture spacing with layer thickness. On the other 
hand, the curves for higher To values, other parameters 
remaining constant, are steep and show non-linearity for 
a wide range of layer thickness. The increase in fracture 
spacing with layer thickness can also be analysed by 
differentiating equation (13) with respect to layer thick- 
ness, 

a2c _ V~I2  
ab X/b ' (14) 

TO L • 
R = ~I-T~_ -kb 

From equation (14), the change in critical fracture 
spacing is small for large layer thickness (b). For very 
large thicknesses fracture spacing may appear to be 
independent of layer thickness as is seen in field data for 
spacing vs thickness (Ladeira & Price 1981). 

Layer-parallel finite strain is not a parameter in 
equation (13). Thus, fracture spacing does not depend 
on extension magnitude but on the bulk strain rate (eb) 
when the embedding weaker medium is viscous. 
Equation (13) indicates that fracture spacing decreases 
with increasing strain rate in the weaker viscous 
interbeds (Fig. 7). 

The exponential function with an arbitrary constant k 
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Fig. 7. Variation of fracture spacing with strain rate for different layer 
thicknesses (b) (from equation 13). ~o, r /are  kept constant and have 

6 values of  1.0 Pa and 1.5 x 10 poise, respectively, and k = 0. 

50 

in equation (6) has been used to describe an asymptotic 
variation in velocity in a laminar flow on a rigid plate 
(fig. 135 in Streeter 1948, p 247). k needs to be character- 
ized empirically. It is consistent with the observation 
that if viscosity (7?) of embedding medium is high, 
velocity (Dx) will approach the far-field value (U*) 
gradually and over a large distance (y). Equation (10) 
shows that k will be less than 1 because at a given strain 
rate, shear stress exerted by higher viscosity materials is 
higher than that exerted by lower viscosity ones. Thus, 
in the present theoretical analysis we can only predict 
that k will lie in the range of 0-1. Equation (13) shows 
that tc is a monotonic function of k. Since 0 ~< k ~< 1, the 
lowest fracture spacing could be at k = 0: 

The arbitrariness of k gives a constraint in the direct 
application of the equation to field data. However, the 
prime aim of the analysis is to show fracture spacing as a 
non-linear function of bed thickness rather than to 
quantify it exactly. Equation (13) shows that for any 
finite value of k the function has a non-linear expression. 
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Fig. 8. Histogram for the fracture spacing distribution in a film-like 
thin layer of Plaster of  Paris. Note that the mean value is close to the 

modal value of the distribution. 

DISCUSSION AND CONCLUSIONS 

The present study considers fracture spacing vs layer 
thickness relationships in rheologically contrasted rock 
sequences. Natural analogs include fractures in boudi- 
naged stiff layers such as dolomite beds in phyllites, 
fractures in chert layers in limestones and, perhaps 
under some situations, joints in sandstone layers embed- 
ded in shales. In these natural settings the weaker 
embedding rocks tend to flow at a higher strain rate than 
the stiffer layers, thereby causing an interracial traction. 
When the stiffer layer is brittle, it fractures in response 
to the traction (Ramberg 1955). The present experimen- 
tal and theoretical results indicate that fracture spacing 
in these situations will necessarily show a non-linear 
relationship with layer thickness. This analysis will not 
be valid, however, for the fractures or joints generated 
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Fig. 9. Hypothetical curves for fracture spacing vs layer thickness variation: (a) an ideal situation with points following a 

smooth curve; (b) dispersion of points in a non-ideal situation where pre-existing flaws control fracture initiation sites. 
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by stresses acting within the brittle later, e.g. hydraulic 
pressure. In such cases, fracture spacing may be inde- 
pendent of layer thickness (Ladeira & Price 1981). 

In the experiments the fractures initiated in response 
to layer-parallel extension were of purely tensional type. 
In conformity with the experiments the present analysis 
considers the spacing vs thickness relationship for purely 
tensile fractures. Thus, the analysis considers tensile 
strength of the brittle layer. The tensile strength is 
directly equated (equation 3) with layer-parallel traction 
at which the brittle layer fails (Ramberg 1955). How- 
ever, for other modes of failure of the brittle layer (shear 
or hybrid fracture) the present analysis could also be 
applicable after some modifications. For this, critical 
tensile stress (trr) at which the brittle layer fails is to be 
determined from a Mohr circle construction. The Mohr 
circle with aT and layer-normal compression (aN) will 
touch the stability curve for the brittle layer. The layer- 
normal compression for the present case is -7?.kb. Then, 
in equation (13) 3o is to be replaced by OT. 

The fractures in the experiments are more or less 
regularly spaced and do not show a large variation in the 
spacing in any one experimental model. However, frac- 
ture spacing distributions are not so regular in rocks. 
Some workers have used median (Narr & Suppe 1991) 
or mode (Rives et al. 1992) for analyses of fracture 
spacing distributions. Since the present experimental 
models were small in size, the number of fractures in a 
layer was not large. So we considered a simple arith- 
metic mean spacing as has been used by Ladeira & Price 
(1981) in field. However, we also conducted experi- 
ments with film-like thin layers of Plaster of Paris that 
produced numerous fractures, the spacing distribution 
of which is slightly asymmetric, somewhat similar to 
field data (Narr & Suppe 1991). But the mean value is 
close to the modal value of the distribution (Fig. 8). 
Thus, we infer that in the present analysis of fracture 
spacing in experiments, using mean values does not lead 
to significant errors. 

The present analysis and experimental data indicate 
that when regular fractures develop at a mechanically 
favoured spacing, a non-linear relationship occurs be- 
tween fracture spacing and layer thickness. In the analy- 
sis fracturing layers are assumed flawless and uniform in 
thickness. The present results may deviate where pre- 
existing inhomogeneities are abundant (Jaegar 1969, p. 
215, Adams & Sines 1978). The presence of flaws causes 
lowering in tensile strength of fracturing layers locally 
(Narr & Suppe 1991). If such flaws are statistically 
uniform in distribution, fractures can also grow system- 
atically from the flaws. From equation (13) the spacing 
at which the flaws in the layer will be activated would 
depend upon the effective tensile strength, which would 
be controlled by the flaw length at a given strain rate in 
the embedding medium. Since the boundary traction 
remains constant for a constant extension rate after 
initiation of the mechanically favoured set of fractures 
further activation of flaws at a closer spacing will not 
take place because tensile stress in the layer segments is 
reduced. However, fracture spacing will necessarily 

show a non-linear relationship with the layer thickness 
as the flaws are activated mostly at a critical spacing (2c) 
and it will be qualitatively similar to the present results. 
In contrast, if the flaws are of varying lengths in the 
distribution, the development of fractures will be 
spatially irregular because effective tensile strength is 
different in different parts of a layer (Narr & Suppe 
1991). For a given thickness, depending on the distri- 
bution of the flaws the spacing would vary. Thus field 
data may show fracture spacing vs layer thickness in a 
non-linear variation with wide dispersion of the points, 
instead of following the theoretically derived smooth 
curve (Fig. 9). 

The present quantitative analysis indicates that frac- 
ture spacing depends on the bulk strain rate. So local 
deviations in strain rate may cause disturbances in the 
ideal relationship between layer thickness and fracture 
spacing. A local increase in the strain rate generates 
higher tractions and results in more close-spaced frac- 
tures locally. The spacing distribution in this type of 
situation may be asymmetric (cf. Narr & Suppe 1991) 
with its mode towards the lower value in the distri- 
bution. 

The embedding material has been considered as a 
viscous substance. So the layer parallel traction is pro- 
portional to the strain rate that remains constant with 
progressive extension. If the embedding substance were 
elastic, its traction on the brittle layer would increase 
with progressive stretching and the tensile stress in a 
segment of the brittle layer would increase continuously 
(Hobbs 1967). Thus, at the instant when tensile stress 
reaches the tensile strength, a set of fractures would 
develop at a spacing as if under the stress for certain 
strain rate when the matrix is viscous. With further 
extension tensile stresses in each segment increase so as 
to reach the tensile strength again giving rise to another 
set of fractures at a lower spacing (Hobbs 1967). As a 
result fracture spacing will depend on the layer-parallel 
finite strain when the embedding weaker medium is 
elastic. 

From the present study it is concluded that, in the rock 
sequences of contrasting rheology, fractures in the stiff 
layers of large lateral extent grow at a mechanically 
favoured spacing (involving minimum resistance in the 
bulk extension) in response to layer-parallel traction by 
the weaker interbeds. The fracture spacing (2c) is a 
function of layer thickness, the ratio of tensile strength 
of layer material to viscosity of the embedding medium 
and the bulk strain rate. Spacing does not depend on 
extensional strain magnitude if the embedding medium 
is viscous. Fracture spacing in this type of situation has a 
non-linear relationship to layer thickness and it is 
insensitive to layer thicknesses for large thicknesses. 
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